logologologologo
  • home
  • learn to code
    • Space Invaders – Beginner’s Course
    • Asteroids – Beginner’s Level 2
    • Space Commander – Beginners Level 3
    • Snake – a Beginner’s Challenge
  • learn to make
    • Arduino Tutorials
    • Raspberry Retro Games Console
  • blog
    • Computer Science
    • Coding
      • Collision Detection
    • Retro Gaming
    • Computer Games for Vision Therapy
  • contact me
The Games That Created the Gaming Industry
The Games That Created the Gaming Industry – The Golden Age of Video Games
16th June 2021
MAME ROMs explained
MAME ROMs Explained and Where To Download Them
19th July 2021
Published by Bob at 18th July 2021
Categories
  • Learn To Code
  • Learn to Code Space Commander
Tags
  • games programming
  • learn to code
  • tic80
  • vector graphics
Modelling the World

Modelling the Game World in Space Commander – Learn to Code Your Own Games

The Space Commander world is modelled as a 2D space, like looking at a map from above. Objects in the game exist and move in this 2D space. All our calculations will take place in this game world. When it’s time to draw objects on the screen we’ll then map the game world to our screen world.

To describe objects’ position and motion we need a few parameters.

Position

This is the (x, y) coordinates of the object in the 2D game space. Screen coordinates tend to use the top left corner as the (0, 0) position with the positive x axis to the right and the positive y axis to the bottom. This differs from the conventional mathematical axes which have the positive x axis to the right but the positive y axis to the top.

It’s really a personal choice but I usually stick to the mathematical model unless the game world is quite simple. In this case we’ll be modelling vector quantities for velocity and acceleration, creating targeting code, etc., so using the mathematical model just makes it easier (for me) to see how angles and positions fit together.

You can make the game world match the screen world, but it doesn’t save much computing power and I can never get my head around the flipped maths!

Direction

When objects move or rotate, we need a way to describe their direction, or the way they are pointing. Using normal mathematical notation this gives us a 0 degree angle parallel to the positive x axis (i.e. horizontally to the right) with positive angles measured in an anti-clockwise direction from it.

Using this notation makes all our angle, sine, cosine and tangent calculations match with what we would expect.

Measuring Angles

Distance

As our world is imaginary, we don’t have to worry about real world distance measurements. Our positions will be easier if we use pixel coordinates, so it makes sense to measure distances in pixels as well.

Time

Again, we get to choose our units of time. We can use seconds, but a more natural measurement inside the code is the game loop. Using one game loop as one unit of time simplifies the whole time process. If we set a speed of 5 pixels per loop, we simply need to add 5 pixels each time our game loop runs.

This method can have problems. It relies on the game loop running at a set speed. TIC80 runs the game loop at 60 loop per second. If our code gets too complex each game loop takes longer than 1/60 second to complete. Our game will start to slow down, and objects will visibly move slower on the screen.

If you’ve played any retro computer games, you’ll have seen this in action.

Making the World Infinite

We want the player to be able to fly as far as they want in any direction, giving this idea of an infinite playing space. If we use a standard position, measured in pixels from a fixed origin we’ll hit a problem.

In computers, numbers have limits. If we use an integer variable to model the x coordinate of the player there will be a maximum (and minimum) value that this variable can store.

If you’re familiar with C programming, you’ll understand about using different numbers of bytes to store integers. A single byte (8 bit) integer can store values from 0 to 255. A 16-bit integer can store 0 to 65535. And so on.

If our player were to fly in one direction for a long time the coordinates may reach the limits of our variable. E.g. using 8-bit integers we can count up to 255, but adding 1 to this will result in an overflow error and our variable will wrap round to 0.

To get around this potential problem we’ll use the fact that we always want to player to be in the centre of the play area. So, we’ll use the player ship as our origin and have everything moving relative to it. So, if the player ship is travelling up, we keep the player stationary, but move everything else down, giving the same end movement.

In TIC80, which uses Lua, all numbers are represented by 64-bit floating-point numbers (real numbers with decimal places!). 10 bits are used for the exponent (the power of ten), 1 for the sign (positive and negative) and 53 for the mantissa (the significant figures of the number). This allows Lua to represent integer values from -2^53 to +2^53. We’d never reach that value, but I hope you get the idea of what we’re doing. If you ever do code in C, or even worse assembly, you’ll now know what to do!

Modelling the position and Movement of Objects

So now we know the basic parameters we’re using let’s look at how we’ll model our data.

We want to create several helper functions that will allow us to calculate positions, movement, rotations and so on. We’ll have a few different object types for our player ship, enemy ships, missiles, stars, etc.

We could write separate functions for each object to, for example, rotate it. But each of these functions would basically be the same code repeated multiple times and this isn’t good coding practice.

So, we want each operation to be handled by a single helper function which will be able to work with all our objects.

e.g. rotate_object(player_ship) and rotate_object(enemy_ship) should both work.

This relies on each object in our game storing its model data in the same format. So, when we create a class (object definition) for each game object it will inherit this data format. This is one of the principles of Object Orientated Programming (OOP) – Inheritance. Or we can think of each object providing a defined set up to its values, an OOP Interface.

If you’re interested in learning Object Orientated Programming, please check out my Python courses on Udemy.

In TIC80 we have to implement this manually, but in other languages, such as Python, we can do it through the OOP coding system.

So, each object in the game will have,

  • a position attribute with x and y coordinates.
  • a velocity attribute with an angle and magnitude

Moving Objects in the 2D World

The Player Ship

We’ve already seen that the player ship isn’t going to move. Its position will always be at (0, 0). But it will have a velocity with angle and magnitude.

To move the player ship, we work out its x and y position increments, dx and dy.

Lua
1
2
dx = velocity.magnitude x cos(velocity.angle)
dy = velocity.magnitude x sin(velocity.angle)

We then take these away from the positions of every other object in the game.

Lua
1
2
3
4
for every_other_object
                position.x = position.x - dx
                position.y = position.y - dy
next every_other_object

Every Other Object

Because we’re modelling our velocities as vectors (magnitude and direction) we can simply add our movements together to get the resultant motion. Each object has its own position and velocity, so we again calculate the incremental movement due to that motion and simply add that to its position after (or before) the movement relative to the player ship.

Lua
1
2
3
4
5
move object relative to player ship
dx_object = velocity.magnitude x cos(velocity.angle)
dy_object = velocity.magnitude x sin(velocity.angle)
object.position.x = object.position.x + dx_object
object.position.y = object.position.y + dy_object

This then gives the new object position in (x, y) format using the player ship as the (0, 0) origin.

Mapping the Game World to the Screen

So, all of the previous calculations allow us to move our objects around in the 2D game world where we are obeying all the mathematical norms for the axes and angles. We need to work out how to draw this on the screen.

We know that we always want the player ship pointing vertically. This is a 90 degree angle, measured from the positive x axis. If the player ship is currently travelling at an angle A, we would need to rotate the whole game map by (90 – A) degrees to get the ship pointing up the screen.

Our screen coordinates are measured from the top left corner, with x increasing to the right and y increasing down the screen. So, to map our 2D game world to the screen we need to take the game world x coordinate, but the negative y coordinate. We then need to offset this by half the screen width and half the screen height to move the origin to the centre of the screen.

So, our helper function will look like,

Lua
1
2
3
new_position(x,y) = rotate (game_world_position around origin by (90 - player_ship_angle) degrees)
new_position.x = new_position.x + screen_offset_x
new_position.y =  -new_position.y + screen_offset_y

This leaves new position with the screen coordinates version of the game world position.

Mapping Object Rotation to the Screen World

As we rotate an object around the origin to position it on the screen its coordinates will change, but so will its angle of rotation.

We know that we need to rotate the game world by (90 – player_ship_angle). So, when we draw an object on the screen world its rotation will also increase by the same amount,

Lua
1
object_screen_angle = object_game_world_angle + (90 - A)

Coding the World Display

So, we’ve now got all the information and calculations we need to code this game world and map it to the screen.

Please have a look at the video and the code below to see how I’ve implemented our algorithms.

Download the cartridge for this tutorial - static enemy ships
Download the cartridge for this tutorial - moving enemy ships

Play the Demo Code

Code

Lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
-- title: Space Commander
-- author: Bob Grant
-- desc:
-- script: lua
 
-- global variables
-- game states
state={}
state.start_screen = 0
state.playing = 1
state.player_exploding = 2
player_exploding_time = 300
state.level_up = 3
player_level_up_time = 300
state.end_game = 10
player_end_game_time = 400
state.scoreboard = 20
 
frame_timer = 0
 
-- TIC80 screen 240 x 136
screen_max_x = 239
screen_max_y = 136
screen_offset = {x=119, y=77}
 
player_ship_max_bullets = 6
player_ship_rotation_speed = 0.015
player_ship_max_velocity = 1.5
player_ship_acceleration = 0.05
player_ship_radius = 7
player_ship_max_health = 50
player_bullet_velocity = player_ship_max_velocity * 2
player_bullet_max_age = 60
player_bullet_damage = 1
player_ship_collide_damage = 25
player_max_lives = 3
max_player_level = 4
 
max_enemies = 3
total_enemies = 3
enemy_id_counter = 0
enemy_ship_max_bullets = 6
enemy_ship_rotation_speed = 0.02
enemy_ship_max_velocity = 1.5
enemy_ship_radius = 4
enemy_max_health = 5
enemy_acceleration = 0.05
enemy_bullet_velocity = enemy_ship_max_velocity * 1.5
enemy_bullet_max_age = 60
enemy_bullet_damage = 1
enemy_bullet_reload = 150
enemy_target_distance = 70
enemy_shooting_range = 80
enemy_rebound_angle = math.pi
enemy_rebound_speed = 1.0
enemy_min_visible_dist = 100
enemy_ship_respawn_dist = 2000
max_enemy_ship_type = 4
 
background_max_objects = 20
 
debug_value1=0
 
player_ship = {}
player_bullets = {}
enemy_bullets = {}
enemies = {}
particles={}
background={}
 
function init_variables(reset_enemies)
-- player ship
player_ship = {}
player_ship.ship_type=player_level
player_ship.position = {x=0, y=0}
player_ship.velocity = {magnitude=0, angle=(math.pi/2)}
player_ship.movement = {dx=0, dy=0}
player_ship.radius = player_ship_radius
player_ship.health = player_ship_max_health
player_ship.timer = 0
 
if(reset_enemies) then
-- respawn enemies
enemies = {}
max_enemies = (5*player_level) + 5
total_enemies = max_enemies * 3
enemy_id_counter = 0
else
-- keep existing enemies but move them a bit further away
for index,ship in ipairs(enemies) do
ship.position.x = ship.position.x *1.5
ship.position.y = ship.position.y *1.5
ship.velocity.magnitude = 0
end -- for
end
 
particles={}
 
background={}
spawn_background{}
 
 
end -- init_variables
 
function init_game_state()
game_state = state.start_screen
last_game_state = game_state
player_lives = player_max_lives
player_score = 0
player_level = 0
end -- init_game_state
 
 
ship_angle = 0
first_run = true
 
function TIC()
if first_run then
for counter = 1,4 do
spawn_enemy_test(counter, -100 +(40 * counter),50)
end -- for
first_run = false
else
cls()
 
update_movement_params()
update_background()
check_ship_rotation()
check_ship_acceleration()
move_enemy_ships()
draw_background()
draw_player_ship()
draw_enemy_ships()
end -- if
 
end -- TIC
 
function spawn_enemy_test(test_ship_type, x,y)
local enemy_ship = {}
enemy_ship.ship_type = test_ship_type
local spawn_angle = 0
local ship_x=x
local ship_y=y
 
enemy_ship.position = {x=ship_x, y=ship_y}
enemy_ship.velocity = {magnitude=0, angle=0}
enemy_ship.hit = false
enemy_ship.movement_type=0
enemy_ship.timer = 0
 
if(enemy_ship.ship_type == 1) then
enemy_ship.rotation_speed = 0.02
enemy_ship.max_velocity = 1.5
enemy_ship.max_health = 5
enemy_ship.health = 5
enemy_ship.acceleration = 0.05
enemy_ship.target_accuracy =0.2
enemy_ship.bullet_velocity = enemy_ship.max_velocity * 1.5
enemy_ship.bullet_max_age = 120
enemy_ship.bullet_damage = 1
enemy_ship.bullet_tracking = false
enemy_ship.bullet_rotation_speed = 0.007
enemy_ship.bullet_trail = false
enemy_ship.fire_speed = 32
enemy_ship.bullet_reload = 150
enemy_ship.bullets = 0
enemy_ship.bullet_radius = 4
enemy_ship.abs_max_bullets = 6
enemy_ship.target_distance = 50
enemy_ship.shooting_range = 80
enemy_ship.radius = 5
enemy_ship.score = 50
enemy_ship.bullets = 0
enemy_ship.max_bullets = math.floor(math.random(enemy_ship.abs_max_bullets)) + 1
elseif(enemy_ship.ship_type == 2) then
enemy_ship.rotation_speed = 0.03
enemy_ship.max_velocity = 1.7
enemy_ship.max_health = 5
enemy_ship.health = 5
enemy_ship.acceleration = 0.1
enemy_ship.target_accuracy =0.15
enemy_ship.bullet_velocity = enemy_ship.max_velocity * 1
enemy_ship.bullet_max_age = 180
enemy_ship.bullet_damage = 2
enemy_ship.bullet_tracking = true
enemy_ship.bullet_trail = true
enemy_ship.bullet_rotation_speed = 0.01
enemy_ship.fire_speed = 32
enemy_ship.bullet_reload = 200
enemy_ship.bullets = 0
enemy_ship.bullet_radius = 4
enemy_ship.abs_max_bullets = math.floor(math.random(4)) + 1
enemy_ship.target_distance = 80
enemy_ship.shooting_range = 100
enemy_ship.radius = 6
enemy_ship.score = 100
enemy_ship.bullets = 0
enemy_ship.max_bullets = math.floor(math.random(enemy_ship.abs_max_bullets)) + 1
elseif(enemy_ship.ship_type == 3) then
enemy_ship.rotation_speed = 0.03
enemy_ship.max_velocity = 1.8
enemy_ship.max_health = 5
enemy_ship.health = 5
enemy_ship.acceleration = 0.15
enemy_ship.target_accuracy =0.15
enemy_ship.bullet_velocity = enemy_ship.max_velocity * 1.5
enemy_ship.bullet_max_age = 180
enemy_ship.bullet_damage = 3
enemy_ship.bullet_tracking = false
enemy_ship.bullet_trail = false
enemy_ship.bullet_rotation_speed = 0.01
enemy_ship.fire_speed = 16
enemy_ship.bullet_reload = 200
enemy_ship.bullets = 0
enemy_ship.bullet_radius = 5
enemy_ship.abs_max_bullets = math.floor(math.random(6)) + 1
enemy_ship.target_distance = 80
enemy_ship.shooting_range = 100
enemy_ship.radius = 7
enemy_ship.score = 100
enemy_ship.bullets = 0
enemy_ship.max_bullets = math.floor(math.random(enemy_ship.abs_max_bullets)) + 1
elseif(enemy_ship.ship_type == 4) then
enemy_ship.rotation_speed = 0.03
enemy_ship.max_velocity = 2
enemy_ship.max_health = 2
enemy_ship.health = 2
enemy_ship.acceleration = 0.2
enemy_ship.target_accuracy =0.15
enemy_ship.bullet_velocity = enemy_ship.max_velocity * 1
enemy_ship.bullet_max_age = 180
enemy_ship.bullet_damage = 3
enemy_ship.bullet_tracking = true
enemy_ship.bullet_trail = true
enemy_ship.bullet_rotation_speed = 0.014
enemy_ship.fire_speed = 16
enemy_ship.bullet_reload = 200
enemy_ship.bullets = 0
enemy_ship.bullet_radius = 5
enemy_ship.abs_max_bullets = math.floor(math.random(6)) + 1
enemy_ship.target_distance = 80
enemy_ship.shooting_range = 100
enemy_ship.radius = 8
enemy_ship.score = 200
enemy_ship.bullets = 0
enemy_ship.max_bullets = math.floor(math.random(enemy_ship.abs_max_bullets)) + 1
end
 
table.insert(enemies,enemy_ship)
 
 
end --spawn ememy
 
function update_movement_params()
player_ship.movement.dx=
player_ship.velocity.magnitude
* math.cos(player_ship.velocity.angle)
player_ship.movement.dy=
player_ship.velocity.magnitude
* math.sin(player_ship.velocity.angle)
end -- update_movement_params
 
function check_ship_rotation()
if(btn(2)) then
player_ship.velocity.angle=
player_ship.velocity.angle + player_ship_rotation_speed
elseif(btn(3)) then
player_ship.velocity.angle=
player_ship.velocity.angle - player_ship_rotation_speed
end
player_ship.velocity.angle =
wrap_angle(player_ship.velocity.angle)
 
end --check_ship_rotation
 
function check_ship_acceleration()
if(btn(0)) then
player_ship.velocity.magnitude=
player_ship.velocity.magnitude + player_ship_acceleration
if (player_ship.velocity.magnitude > player_ship_max_velocity) then player_ship.velocity.magnitude = player_ship_max_velocity end
elseif(btn(1)) then
player_ship.velocity.magnitude=
player_ship.velocity.magnitude - player_ship_acceleration
if (player_ship.velocity.magnitude < (-player_ship_max_velocity/2)) then player_ship.velocity.magnitude = (-player_ship_max_velocity/2) end
end
-- check for stationary
if math.abs(player_ship.velocity.magnitude)
< (player_ship_acceleration * 0.9) then
player_ship.velocity.magnitude = 0
end
 
end --check_ship_acceleration
 
 
function move_relative_to_player(point)
-- moves the point not the ship position
 
point.x=point.x - player_ship.movement.dx
point.y=point.y - player_ship.movement.dy
return point
end -- move_player_ship
 
function move_by_velocity(point, velocity)
-- moves the point
local dx=velocity.magnitude * math.cos(velocity.angle)
local dy=velocity.magnitude * math.sin(velocity.angle)
point.x=point.x + dx
point.y=point.y + dy
return point
end
 
function move_enemy_ships()
for index, ship in ipairs(enemies) do
ship.position = move_relative_to_player(ship.position)
end -- for
end -- move_enemy_ships
 
function spawn_enemy()
if ((#enemies < max_enemies) and (enemy_id_counter < total_enemies)) then
enemy_ship = {}
enemy_ship.ship_type = 1 + (math.floor(math.random() * (player_level + 1)))
if (enemy_ship.ship_type > max_enemy_ship_type) then
enemy_ship.ship_type = max_enemy_ship_type
end
local spawn_angle = math.random() * (2 * math.pi)
local spawn_distance = math.floor(math.random(500)) + 1000
local ship_x=spawn_distance * math.cos(spawn_angle)
local ship_y=spawn_distance * math.sin(spawn_angle)
 
enemy_ship.id = enemy_id_counter
enemy_id_counter = enemy_id_counter + 1
enemy_ship.position = {x=ship_x, y=ship_y}
enemy_ship.velocity = {magnitude=0, angle=0}
enemy_ship.hit = false
enemy_ship.movement_type=0
enemy_ship.timer = 0
 
if(enemy_ship.ship_type == 1) then
enemy_ship.rotation_speed = 0.02
enemy_ship.max_velocity = 1.5
enemy_ship.max_health = 5
enemy_ship.health = 5
enemy_ship.acceleration = 0.05
enemy_ship.target_accuracy =0.2
enemy_ship.bullet_velocity = enemy_ship.max_velocity * 1.5
enemy_ship.bullet_max_age = 120
enemy_ship.bullet_damage = 1
enemy_ship.bullet_tracking = false
enemy_ship.bullet_rotation_speed = 0.007
enemy_ship.bullet_trail = false
enemy_ship.fire_speed = 32
enemy_ship.bullet_reload = 150
enemy_ship.bullets = 0
enemy_ship.bullet_radius = 4
enemy_ship.abs_max_bullets = 6
enemy_ship.target_distance = 50
enemy_ship.shooting_range = 80
enemy_ship.radius = 5
enemy_ship.score = 50
enemy_ship.bullets = 0
enemy_ship.max_bullets = math.floor(math.random(enemy_ship.abs_max_bullets)) + 1
elseif(enemy_ship.ship_type == 2) then
enemy_ship.rotation_speed = 0.03
enemy_ship.max_velocity = 1.7
enemy_ship.max_health = 5
enemy_ship.health = 5
enemy_ship.acceleration = 0.1
enemy_ship.target_accuracy =0.15
enemy_ship.bullet_velocity = enemy_ship.max_velocity * 1
enemy_ship.bullet_max_age = 180
enemy_ship.bullet_damage = 2
enemy_ship.bullet_tracking = true
enemy_ship.bullet_trail = true
enemy_ship.bullet_rotation_speed = 0.01
enemy_ship.fire_speed = 32
enemy_ship.bullet_reload = 200
enemy_ship.bullets = 0
enemy_ship.bullet_radius = 4
enemy_ship.abs_max_bullets = math.floor(math.random(4)) + 1
enemy_ship.target_distance = 80
enemy_ship.shooting_range = 100
enemy_ship.radius = 6
enemy_ship.score = 100
enemy_ship.bullets = 0
enemy_ship.max_bullets = math.floor(math.random(enemy_ship.abs_max_bullets)) + 1
elseif(enemy_ship.ship_type == 3) then
enemy_ship.rotation_speed = 0.03
enemy_ship.max_velocity = 1.8
enemy_ship.max_health = 5
enemy_ship.health = 5
enemy_ship.acceleration = 0.15
enemy_ship.target_accuracy =0.15
enemy_ship.bullet_velocity = enemy_ship.max_velocity * 1.5
enemy_ship.bullet_max_age = 180
enemy_ship.bullet_damage = 3
enemy_ship.bullet_tracking = false
enemy_ship.bullet_trail = false
enemy_ship.bullet_rotation_speed = 0.01
enemy_ship.fire_speed = 16
enemy_ship.bullet_reload = 200
enemy_ship.bullets = 0
enemy_ship.bullet_radius = 5
enemy_ship.abs_max_bullets = math.floor(math.random(6)) + 1
enemy_ship.target_distance = 80
enemy_ship.shooting_range = 100
enemy_ship.radius = 7
enemy_ship.score = 100
enemy_ship.bullets = 0
enemy_ship.max_bullets = math.floor(math.random(enemy_ship.abs_max_bullets)) + 1
elseif(enemy_ship.ship_type == 4) then
enemy_ship.rotation_speed = 0.03
enemy_ship.max_velocity = 2
enemy_ship.max_health = 2
enemy_ship.health = 2
enemy_ship.acceleration = 0.2
enemy_ship.target_accuracy =0.15
enemy_ship.bullet_velocity = enemy_ship.max_velocity * 1
enemy_ship.bullet_max_age = 180
enemy_ship.bullet_damage = 3
enemy_ship.bullet_tracking = true
enemy_ship.bullet_trail = true
enemy_ship.bullet_rotation_speed = 0.014
enemy_ship.fire_speed = 16
enemy_ship.bullet_reload = 200
enemy_ship.bullets = 0
enemy_ship.bullet_radius = 5
enemy_ship.abs_max_bullets = math.floor(math.random(6)) + 1
enemy_ship.target_distance = 80
enemy_ship.shooting_range = 100
enemy_ship.radius = 8
enemy_ship.score = 200
enemy_ship.bullets = 0
enemy_ship.max_bullets = math.floor(math.random(enemy_ship.abs_max_bullets)) + 1
end
 
table.insert(enemies,enemy_ship)
end --if
 
end --spawn ememy
 
function spawn_background()
-- initial background in player area
background = {}
for stars=1, background_max_objects do
star_x = math.random(screen_max_x + (2*player_ship_max_velocity)) - player_ship_max_velocity - math.floor(screen_max_x/2)
star_y = math.random(screen_max_y + (2*player_ship_max_velocity)) - player_ship_max_velocity - math.floor(screen_max_y/2)
generate_background_object(0, star_x, star_y)
end --for
 
 
end -- spawn_background
 
function update_background()
local new_object=false
for index,object in ipairs(background) do
-- update for player moveent
object.position = move_relative_to_player(object.position)
object.velocity.angle =
object.velocity.angle + object.rotation_speed
-- wrap objects going out of working background area
new_object=false
if (object.position.x < -(player_ship_max_velocity + math.floor(screen_max_x/2))) then
object.position.x = math.floor(screen_max_x/2) + player_ship_max_velocity
new_object=true
elseif (object.position.x > (player_ship_max_velocity + math.floor(screen_max_x/2))) then
object.position.x = -(math.floor(screen_max_x/2) + player_ship_max_velocity)
new_object=true
end
if (object.position.y < -(player_ship_max_velocity + math.floor(screen_max_y/2))) then
object.position.y = math.floor(screen_max_y/2) + player_ship_max_velocity
new_object=true
elseif (object.position.y > math.floor(screen_max_y/2) + player_ship_max_velocity) then
object.position.y = -(math.floor(screen_max_y/2) + player_ship_max_velocity)
new_object=true
end
if (new_object) then
object = change_background_object(object)
end
 
end -- for
 
end -- update_background
 
 
function generate_background_object(type, object_x, object_y)
if (#background < background_max_objects) then
-- make new object
object = {}
object.type = math.floor(math.random(10)) + 1
if (object.type>2) then
object.type = 1
end
object.position={}
object.position.x = object_x
object.position.y = object_y
object.velocity={}
object.velocity.magnitude=0
object.velocity.angle=0
object.rotation_speed = (math.random(4) - 2) /100
object.age=0
object.colour = math.floor(math.random(15)) + 1
table.insert(background, object)
end
end -- generate_background_object
 
function change_background_object(object)
object.type = math.floor(math.random(10)) + 1
if (object.type>2) then
object.type = 1
end
object.age=0
object.rotation_speed = (math.random(4) - 2) / 100
object.colour = math.floor(math.random(15)) + 1
return object
end -- change_background_object
 
function update_end_game()
 
end -- update_end_game
 
function update_scoreboard()
 
end -- update_scoreboard
 
function draw_start_screen()
cls()
print("SPACE COMMANDER", 30,30, 6,FALSE,2)
spr(16,85,50,-1,3,0,0,2,2)
print("PRESS Z TO PLAY", 35,110, 15,FALSE,2)
end -- draw_start_screen
 
function draw_playing()
cls()
--print(player_ship.health, 0,0)
--print(angle_to_player.." - "..distance_to_player, 0,8)
draw_background()
draw_bullets()
draw_player_ship()
draw_enemy_ships()
draw_particles()
draw_radar()
draw_dashboard()
end -- draw_playing
 
function draw_background()
for index,object in ipairs(background) do
draw_background_object(object)
end -- for
end -- draw_background
 
function draw_background_object(object)
local position = {}
local velocity = {}
position = translate_position_to_display(object.position)
velocity = translate_velocity_to_display(object.velocity)
if (object.type == 2) then
pix(position.x, position.y, object.colour)
pix(position.x+1, position.y, object.colour)
pix(position.x, position.y+1, object.colour)
pix(position.x+1, position.y+1, object.colour)
elseif (object.type==3) then
draw_object(10,{x=position.x, y=position.y},velocity.angle)
else
pix(position.x, position.y, object.colour)
end
end -- draw_background_object
 
function draw_player_ship()
local ship_icon = (player_level*2)+16
if(ship_icon > 22) then
ship_icon=22
end
spr(ship_icon,
screen_offset.x-8, screen_offset.y-8,
0,1,0,0,2,2)
end -- draw_player_ship
 
function draw_enemy_ships()
local position = {}
local velocity = {}
for index,ship in ipairs(enemies) do
position = translate_position_to_display(ship.position)
velocity = translate_velocity_to_display(ship.velocity)
ship.screen_position = position
if ((math.abs(ship.position.x ) < enemy_min_visible_dist) and (math.abs(ship.position.y) < enemy_min_visible_dist)) then
circ(position.x, position.y,ship.radius,0)
draw_object(ship.ship_type,position,velocity.angle)
end
end -- for
end --draw_enemy_ships
 
function draw_object(object_type, origin, angle)
local object_shape = get_object_shape(object_type)
local point={}
local last_point={}
local rotated_point
for index,point in ipairs(object_shape) do
-- rotate object point around {0,0}
rotated_point = rotate_point({x=0, y=0}, point, angle)
point.x = rotated_point.x
point.y = rotated_point.y
-- move object point to correct screen position
point.x = point.x + origin.x
point.y = -point.y + origin.y
if (point.newline) then
last_point = point
else
line(last_point.x, last_point.y, point.x, point.y, point.colour)
last_point=point
end
end -- for
end -- draw_object
 
function get_object_shape(object_type)
local object_shape = {}
if (object_type == 0) then
-- player object_type
object_shape = {}
table.insert(object_shape, {y=-5,x=-5, newline=true, colour=5})
table.insert(object_shape, {y=-5,x=0, newline=false, colour=5})
table.insert(object_shape, {y=0, x=5, newline=false, colour=5})
table.insert(object_shape, {y=5, x=0, newline=false, colour=5})
table.insert(object_shape, {y=5, x=-5, newline=false, colour=5})
table.insert(object_shape, {y=2, x=-5, newline=false, colour=5})
table.insert(object_shape, {y=2, x=-2, newline=false, colour=5})
table.insert(object_shape, {y=-2, x=-2, newline=false, colour=5})
table.insert(object_shape, {y=-2, x=-5, newline=false, colour=5})
table.insert(object_shape, {y=-5, x=-5, newline=false, colour=5})
table.insert(object_shape, {y=5, x=-5, newline=true, colour=5})
table.insert(object_shape, {y=2, x=-5, newline=false, colour=14})
table.insert(object_shape, {y=-2, x=-5, newline=true, colour=5})
table.insert(object_shape, {y=-5, x=-5, newline=false, colour=14})
elseif(object_type == 1) then
-- level 1 ship
object_shape = {}
table.insert(object_shape, {x=-5, y=-5,newline=true, colour=5})
table.insert(object_shape, {x=0, y=-4,newline=false, colour=5})
table.insert(object_shape, {x=5, y=0, newline=false, colour=5})
table.insert(object_shape, {x=0, y=4, newline=false, colour=5})
table.insert(object_shape, {x=-5, y=5, newline=false, colour=5})
table.insert(object_shape, {x=-4, y=3, newline=false, colour=5})
table.insert(object_shape, {x=-3, y=0, newline=false, colour=5})
table.insert(object_shape, {x=-4, y=-3, newline=false, colour=5})
table.insert(object_shape, {x=-5, y=-5, newline=false, colour=5})
table.insert(object_shape, {x=4, y=0, newline=true, colour=14})
table.insert(object_shape, {x=2, y=1, newline=false, colour=14})
table.insert(object_shape, {x=0, y=0, newline=false, colour=14})
table.insert(object_shape, {x=2, y=-1, newline=false, colour=14})
table.insert(object_shape, {x=4, y=0, newline=false, colour=14})
table.insert(object_shape, {x=0, y=0, newline=false, colour=14})
elseif(object_type == 2) then
-- level 2 ship
object_shape = {}
table.insert(object_shape, {x=-6, y=-6,newline=true, colour=13})
table.insert(object_shape, {x=3, y=-6,newline=false, colour=13})
table.insert(object_shape, {x=-2, y=-4, newline=false, colour=13})
table.insert(object_shape, {x=-3, y=-2, newline=false, colour=13})
table.insert(object_shape, {x=4, y=2, newline=false, colour=13})
table.insert(object_shape, {x=6, y=0, newline=false, colour=13})
table.insert(object_shape, {x=4, y=-2, newline=false, colour=13})
table.insert(object_shape, {x=-3, y=2, newline=false, colour=13})
table.insert(object_shape, {x=-2, y=4, newline=false, colour=13})
table.insert(object_shape, {x=3, y=6, newline=false, colour=13})
table.insert(object_shape, {x=-6, y=6, newline=false, colour=13})
table.insert(object_shape, {x=-4, y=0, newline=false, colour=13})
table.insert(object_shape, {x=-6, y=-6, newline=false, colour=13})
table.insert(object_shape, {x=5, y=0, newline=true, colour=9})
table.insert(object_shape, {x=3, y=1, newline=false, colour=9})
table.insert(object_shape, {x=1, y=0, newline=false, colour=9})
table.insert(object_shape, {x=3, y=-1, newline=false, colour=9})
table.insert(object_shape, {x=5, y=0, newline=false, colour=9})
table.insert(object_shape, {x=1, y=0, newline=false, colour=9})
elseif(object_type == 3) then
-- level 3 ship
object_shape = {}
table.insert(object_shape, {x=-6, y=-0,newline=true, colour=6})
table.insert(object_shape, {x=8, y=-3,newline=false, colour=6})
table.insert(object_shape, {x=6, y=0, newline=false, colour=6})
table.insert(object_shape, {x=8, y=3, newline=false, colour=6})
table.insert(object_shape, {x=-6, y=0, newline=false, colour=6})
table.insert(object_shape, {x=-4, y=1, newline=true, colour=6})
table.insert(object_shape, {x=-2, y=6, newline=false, colour=6})
table.insert(object_shape, {x=2, y=2, newline=false, colour=6})
table.insert(object_shape, {x=-4, y=1, newline=true, colour=6})
table.insert(object_shape, {x=0, y=3, newline=false, colour=6})
table.insert(object_shape, {x=-4, y=1, newline=true, colour=6})
table.insert(object_shape, {x=-2, y=-6, newline=false, colour=6})
table.insert(object_shape, {x=2, y=-2, newline=false, colour=6})
table.insert(object_shape, {x=-4, y=-1, newline=true, colour=6})
table.insert(object_shape, {x=0, y=-3, newline=false, colour=6})
table.insert(object_shape, {x=5, y=0, newline=true, colour=14})
table.insert(object_shape, {x=3, y=1, newline=false, colour=14})
table.insert(object_shape, {x=1, y=0, newline=false, colour=14})
table.insert(object_shape, {x=3, y=-1, newline=false, colour=14})
table.insert(object_shape, {x=5, y=0, newline=false, colour=14})
table.insert(object_shape, {x=1, y=0, newline=false, colour=14})
elseif(object_type == 4) then
-- level 4 ship
object_shape = {}
table.insert(object_shape, {x=-7, y=0,newline=true, colour=8})
table.insert(object_shape, {x=-4, y=1,newline=false, colour=8})
table.insert(object_shape, {x=-2, y=4,newline=false, colour=8})
table.insert(object_shape, {x=-4, y=4,newline=false, colour=8})
table.insert(object_shape, {x=-6, y=6,newline=false, colour=8})
table.insert(object_shape, {x=-7, y=9,newline=false, colour=8})
table.insert(object_shape, {x=-1, y=9,newline=false, colour=8})
table.insert(object_shape, {x=2, y=7,newline=false, colour=8})
table.insert(object_shape, {x=5, y=4,newline=false, colour=8})
table.insert(object_shape, {x=7, y=0,newline=false, colour=8})
table.insert(object_shape, {x=5, y=-4,newline=false, colour=8})
table.insert(object_shape, {x=2, y=-7,newline=false, colour=8})
table.insert(object_shape, {x=-1, y=-9,newline=false, colour=8})
table.insert(object_shape, {x=-7, y=-9,newline=false, colour=8})
table.insert(object_shape, {x=-6, y=-6,newline=false, colour=8})
table.insert(object_shape, {x=-4, y=-4,newline=false, colour=8})
table.insert(object_shape, {x=-2, y=-4,newline=false, colour=8})
table.insert(object_shape, {x=-4, y=-1,newline=false, colour=8})
table.insert(object_shape, {x=-7, y=-0,newline=false, colour=8})
table.insert(object_shape, {x=5, y=4,newline=true, colour=8})
table.insert(object_shape, {x=3, y=1,newline=false, colour=8})
table.insert(object_shape, {x=2, y=0,newline=false, colour=8})
table.insert(object_shape, {x=3, y=-1,newline=false, colour=8})
table.insert(object_shape, {x=5, y=-4,newline=false, colour=8})
elseif (object_type == 10) then --background star
object_shape = {}
table.insert(object_shape, {y=0,x=1, newline=true, colour=10})
table.insert(object_shape, {y=0,x=-1, newline=false, colour=math.floor(math.random(15)) + 1})
table.insert(object_shape, {y=1, x=0, newline=true, colour=10})
table.insert(object_shape, {y=-1, x=0, newline=false, colour=math.floor(math.random(15)) + 1})
elseif (object_type == 20) then -- player bullet
object_shape = {}
table.insert(object_shape, {x=0,y=0, newline=true, colour=10})
table.insert(object_shape, {x=5,y=0, newline=false, colour=10})
elseif (object_type == 21) then -- player bullet
object_shape = {}
table.insert(object_shape, {x=0,y=0, newline=true, colour=math.floor(math.random(4))+7})
table.insert(object_shape, {x=3,y=0, newline=false, colour=math.floor(math.random(4))+7})
table.insert(object_shape, {x=0,y=0, newline=true, colour=math.floor(math.random(4))+7})
table.insert(object_shape, {x=-3,y=0, newline=false, colour=math.floor(math.random(4))+7})
table.insert(object_shape, {x=0,y=0, newline=true, colour=math.floor(math.random(4))+7})
table.insert(object_shape, {x=0,y=3, newline=false, colour=math.floor(math.random(4))+7})
table.insert(object_shape, {x=0,y=0, newline=true, colour=math.floor(math.random(4))+7})
table.insert(object_shape, {x=0,y=-3, newline=false, colour=math.floor(math.random(4))+7})
table.insert(object_shape, {x=0,y=0, newline=true, colour=math.floor(math.random(4))+7})
table.insert(object_shape, {x=-2,y=-2, newline=false, colour=math.floor(math.random(4))+7})
table.insert(object_shape, {x=0,y=0, newline=true, colour=math.floor(math.random(4))+7})
table.insert(object_shape, {x=2,y=-2, newline=false, colour=math.floor(math.random(4))+7})
table.insert(object_shape, {x=0,y=0, newline=true, colour=math.floor(math.random(4))+7})
table.insert(object_shape, {x=2,y=2, newline=false, colour=math.floor(math.random(4))+7})
table.insert(object_shape, {x=0,y=0, newline=true, colour=math.floor(math.random(4))+7})
table.insert(object_shape, {x=-2,y=2, newline=false, colour=math.floor(math.random(4))+7})
elseif (object_type == 30) then -- enemy bullet type1
object_shape = {}
table.insert(object_shape, {x=0,y=0, newline=true, colour=9})
table.insert(object_shape, {x=5,y=0, newline=false, colour=9})
elseif (object_type == 31) then -- enemy bullet type2
object_shape = {}
table.insert(object_shape, {x=0,y=0, newline=true, colour=10})
table.insert(object_shape, {x=5,y=0, newline=false, colour=10})
table.insert(object_shape, {x=0,y=1, newline=true, colour=10})
table.insert(object_shape, {x=0,y=-1, newline=false, colour=10})
table.insert(object_shape, {x=3,y=1, newline=true, colour=10})
table.insert(object_shape, {x=3,y=-1, newline=false, colour=10})
elseif (object_type == 32) then -- enemy bullet type3
object_shape = {}
table.insert(object_shape, {x=0,y=0, newline=true, colour=get_fire_colour()})
table.insert(object_shape, {x=3,y=0, newline=false, colour=get_fire_colour()})
table.insert(object_shape, {x=0,y=0, newline=true, colour=get_fire_colour()})
table.insert(object_shape, {x=-3,y=0, newline=false, colour=get_fire_colour()})
table.insert(object_shape, {x=0,y=0, newline=true, colour=get_fire_colour()})
table.insert(object_shape, {x=0,y=3, newline=false, colour=get_fire_colour()})
table.insert(object_shape, {x=0,y=0, newline=true, colour=get_fire_colour()})
table.insert(object_shape, {x=0,y=-3, newline=false, colour=get_fire_colour()})
table.insert(object_shape, {x=0,y=0, newline=true, colour=get_fire_colour()})
table.insert(object_shape, {x=-2,y=-2, newline=false, colour=get_fire_colour()})
table.insert(object_shape, {x=0,y=0, newline=true, colour=get_fire_colour()})
table.insert(object_shape, {x=2,y=-2, newline=false, colour=get_fire_colour()})
table.insert(object_shape, {x=0,y=0, newline=true, colour=get_fire_colour()})
table.insert(object_shape, {x=2,y=2, newline=false, colour=get_fire_colour()})
table.insert(object_shape, {x=0,y=0, newline=true, colour=get_fire_colour()})
table.insert(object_shape, {x=-2,y=2, newline=false, colour=get_fire_colour()})
elseif (object_type == 33) then -- enemy bullet type4
object_shape = {}
table.insert(object_shape, {x=0,y=0, newline=true, colour=get_fire_colour()})
table.insert(object_shape, {x=3,y=0, newline=false, colour=get_fire_colour()})
table.insert(object_shape, {x=0,y=0, newline=true, colour=get_fire_colour()})
table.insert(object_shape, {x=-3,y=0, newline=false, colour=get_fire_colour()})
table.insert(object_shape, {x=0,y=0, newline=true, colour=get_fire_colour()})
table.insert(object_shape, {x=0,y=3, newline=false, colour=get_fire_colour()})
table.insert(object_shape, {x=0,y=0, newline=true, colour=get_fire_colour()})
table.insert(object_shape, {x=0,y=-3, newline=false, colour=get_fire_colour()})
table.insert(object_shape, {x=0,y=0, newline=true, colour=get_fire_colour()})
table.insert(object_shape, {x=-2,y=-2, newline=false, colour=get_fire_colour()})
table.insert(object_shape, {x=0,y=0, newline=true, colour=get_fire_colour()})
table.insert(object_shape, {x=2,y=-2, newline=false, colour=get_fire_colour()})
table.insert(object_shape, {x=0,y=0, newline=true, colour=get_fire_colour()})
table.insert(object_shape, {x=2,y=2, newline=false, colour=get_fire_colour()})
table.insert(object_shape, {x=0,y=0, newline=true, colour=get_fire_colour()})
table.insert(object_shape, {x=-2,y=2, newline=false, colour=get_fire_colour()})
end
return object_shape
end -- get_object_shape
 
function get_fire_colour()
-- returns a fire colour
local colours = {6,8,12,14,15}
return colours[math.random(#colours)]
 
end -- get_fire_colour
 
function rotate_point(origin, point, angle)
local transposed_point = {}
transposed_point.x = point.x - origin.x
transposed_point.y = point.y - origin.y
local rotated_point = {}
rotated_point.x =
(transposed_point.x * math.cos(angle))
- (transposed_point.y * math.sin(angle))
rotated_point.y =
(transposed_point.y * math.cos(angle))
+ (transposed_point.x * math.sin(angle))
 
-- update provided point
rotated_point.x = rotated_point.x + origin.x
rotated_point.y = rotated_point.y + origin.y
return rotated_point
end -- rotate_point
 
function translate_position_to_display(position)
local new_position = {}
local adjusted_angle = (math.pi/2) - player_ship.velocity.angle
adjusted_angle = wrap_angle(adjusted_angle)
new_position =
rotate_point({x=0,y=0}, position, adjusted_angle)
new_position.x = new_position.x + screen_offset.x
new_position.y = -new_position.y + screen_offset.y
return new_position
end -- translate_position_to_display
 
function translate_velocity_to_display(velocity)
local new_velocity={}
new_velocity.angle =
velocity.angle + (math.pi/2) - player_ship.velocity.angle
new_velocity.angle = wrap_angle(new_velocity.angle)
new_velocity.magnitude = velocity.magnitude
return new_velocity
end -- translate_velocity_to_display
 
-- add two angle / magnitude vectors
function add_velocities(v1, v2)
 
local dx1=v1.magnitude * math.cos(v1.angle)
local dy1=v1.magnitude * math.sin(v1.angle)
local dx2=v2.magnitude * math.cos(v2.angle)
local dy2=v2.magnitude * math.sin(v2.angle)
 
local dx = dx1 + dx2
local dy = dy1 + dy2
 
local velocity = {}
velocity.dx = dx
velocity.dy = dy
velocity.angle = math.atan2(dy, dx)
velocity.magnitude = math.sqrt((dx*dx) + (dy*dy))
return velocity
end
 
function get_angle_to_target(subject, target)
local dx = target.position.x-subject.position.x
local dy = target.position.y-subject.position.y
local angle_to_target = math.atan2(dy, dx)
angle_to_target = wrap_angle(angle_to_target)
return angle_to_target
end --get_angle_to_target
 
function wrap_angle(angle)
local new_angle = angle
if (new_angle > (2*math.pi)) then
new_angle = new_angle - (2*math.pi)
elseif(new_angle < 0) then
new_angle = new_angle + (2*math.pi)
end --if
return new_angle
end -- wrap_angle
 
function add_angles(angle1, angle2)
local new_angle = angle1 + angle2
new_angle = wrap_angle(new_angle)
return new_angle
end -- add_angles
 
function get_angle_inc(target_angle, current_angle, target_accuracy)
local increment = 0
local angle_diff = target_angle - current_angle
if (angle_diff < 0) then
angle_diff = (2*math.pi) + angle_diff
end -- if
if (math.abs(angle_diff) < target_accuracy) then
increment = 0
elseif (angle_diff > math.pi) then
increment = -1
else
increment=1
end -- if
return increment
end -- get_angle_inc
 
-- first run code
-- run init functions to set up game
init_game_state()
init_variables(true)

Share
2
Bob
Bob

Related posts

Vector Graphics for Space Commander
20th May 2021

Vector Graphics for Space Commander – Learn to Code Your Own Games


Read more
Space Commander Overview
9th May 2021

Space Commander Overview – Learn to Code Your Own Games


Read more
Learn to code Snake
8th October 2020

Learn to Code Snake in TIC80 – Code Walkthrough


Read more

Comments are closed.

  • Privacy Policy
  • Contact Me
© 2020 Bytes N Bits